Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.
نویسندگان
چکیده
Many amphibian tadpoles hatch and swim before their inner ears and sense of spatial orientation differentiate. We describe upward and downward swimming responses in hatchling Xenopus laevis tadpoles from stages 32 to 37/38 in which the body rotates about its longitudinal axis. Tadpoles are heavier than water and, if touched while lying on the substratum, they reliably swim upwards, often in a tight spiral. This response has been observed using stroboscopic photography and high-speed video recordings. The sense of the spiral is not fixed for individual tadpoles. In 'more horizontal swimming' (i.e. in directions within +/-30 degrees of the horizontal), the tadpoles usually swim belly-down, but this position is not a prerequisite for subsequent upward spiral swimming. Newly hatched tadpoles spend 99 % of their time hanging tail-down from mucus secreted by a cement gland on the head. When suspended in mid-water by a mucus strand, tadpoles from stage 31 to 37/38 tend to swim spirally down when touched on the head and up when touched on the tail. The three-dimensional swimming paths of stage 33/34 tadpoles were plotted using simultaneous video images recorded from the side and from above. Tadpoles spiralled for 70 % of the swimming time, and the probability of spiralling increased to 1 as swim path angles became more vertical. Tadpoles were neutrally buoyant in Percoll/water mixtures at 1.05 g cm(-)(3), in which anaesthetised tadpoles floated belly-down and head-up at 30 degrees. In water, their centre of mass was ventral to the muscles in the yolk mass. A simple mathematical model suggests that the orientation of tadpoles during swimming is governed by the action of two torques, one of which raises the head (i.e. increases the pitch) and the other rotates (rolls) the body. Consequently, tadpoles (i) swim belly-down when the body is approximately horizontal because the body is ballasted by dense yolk, and (ii) swim spirally at more vertical orientations when the ballasting no longer stabilises orientation. Measurements in tethered tadpoles show that dorsal body flexion, which could produce a dorsal pitch torque, is present during swimming and increases with tailbeat frequency. We discuss how much of the tadpole's behaviour can be explained by our mathematical model and suggest that, at this stage of development, oriented swimming responses may depend on simple touch reflexes, the organisation of the muscles and physical features of the body, rather than on vestibular reflexes.
منابع مشابه
Responses of young Xenopus laevis tadpoles to light dimming: possible roles for the pineal eye.
When the light is dimmed, the pineal eye of hatchling Xenopus laevis tadpoles excites the central pattern generator for swimming, but the behavioural significance of pineal excitation is unclear. We show that tadpoles spend 99 % of their time hanging from the surface meniscus or solid objects using mucus secreted by a cement gland on the head. Attachment inhibits swimming, but unattached tadpol...
متن کاملEvolutionary divergence in developmental strategies and neuromodulatory control systems of two amphibian locomotor networks.
Attempts to understand the neural mechanisms which produce behaviour must consider both prevailing sensory cues and the central cellular and synaptic changes they direct. At each level, neuromodulation can additionally shape the final output. We have investigated neuromodulation in the developing spinal motor networks in hatchling tadpoles of two closely related amphibians, Xenopus laevis and R...
متن کاملThermal activation of escape swimming in post-hatching Xenopus laevis frog larvae.
Survival requires the selection of appropriate behavioural responses in the face of danger. With respect to the threat of predation, both the decision to escape and the underlying neuronal mechanisms have been extensively studied, but processes that trigger evasion of abiotic stressors, which are potentially hazardous to survival, are less well understood. Here, we document the interplay betwee...
متن کاملSwimming kinematics and respiratory behaviour of xenopus laevis larvae raised in altered gravity
We examined the respiratory behaviours and swimming kinematics of Xenopus laevis tadpoles hatched in microgravity (Space Shuttle), simulated microgravity (clinostat) and hypergravity (3 g centrifuge). All observations were made in the normal 1 g environment. Previous research has shown that X. laevis raised in microgravity exhibit abnormalities in their lungs and vestibular system upon return t...
متن کاملAlterations in ambient salinity and pH lead to modulation of developmental gene expression in Microhyla ornata (Duméril and Bibron) and Xenopus laevis (Daudin).
Naturally fertilized Microhyla ornata and Xenopus laevis embryos at dorsal lip of blastopore stage were exposed to 0.3, and 0.6% sodium chloride for high salinity treatment and dilute hydrochloric acid and sodium hydroxide for treatment with low and high pH, respectively. After treatment for different durations, embryos were studied morphologically and using in situ hybridization with selected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 12 شماره
صفحات -
تاریخ انتشار 2000